

Tetrahedron Letters 43 (2002) 5075–5078

Synthesis of pentacarbonyltungsten(0) complexes of bulky 1,2-diphosphabut-1-en-3-ynes as a heavier enyne congener

Shigekazu Ito, Katsunori Nishide and Masaaki Yoshifuji*

Department of Chemistry, *Graduate School of Science*, *Tohoku University*, *Aoba*, *Sendai* 980-8578, *Japan* Received 17 April 2002; accepted 24 May 2002

Abstract—Pentacarbonyltungsten(0) complexes of kinetically stabilized 1,2-diphosphabut-1-en-3-ynes were synthesized as a heavier conjugated enyne system featuring a phosphorus-phosphorus double bond, and characterized by spectroscopic and crystallographic analyses. © 2002 Elsevier Science Ltd. All rights reserved.

Considerable attention is being paid to ethynylphosphines [$>$ P-C $=$ C $-$] because of the electronic interaction between the phosphorus atom and the π -orbital of the acetylene moiety. It has been known that ethynylphosphines show certain changes in spectroscopic and thermodynamic properties as well as interconversion of the skeleton, $1-5$ and they have been utilized as a source of some organometallic and cyclic compounds.^{6–9} On the other hand, in 1981, we reported the first successful example of a stable diphosphene **1** (Chart 1) by use of a kinetic stabilization method with a bulky 2,4,6-tri-*t*butylphenyl group (hereafter abbreviated to Mes*),¹⁰ and until now, a number of stable diphosphenes have been derived as described in the reviews.^{11–14} Although the diphosphene moiety can be incorporated with any conjugated system, the number of conjugated systems involving the $P=P$ unit is quite limited if those with directly bound aromatic rings are excluded.^{11,15-17} Taking these results into consideration, substitution of the acetylene group on the low-coordinated phosphorus atom would affect the intriguing properties of the diphosphene moiety, which would be utilized as a material for novel conjugated systems including low-coordi-

Keywords: phosphorus compounds; diphosphenes; alkynes; complexes; steric effects.

nated phosphorus atoms, since conjugated enyne compounds indicate versatile properties for organic synthesis¹⁸ and antibiotics.¹⁹ Here we report the preparation, structure and some properties of kinetically stabilized 1,2-diphosphabut-1-en-3-yne compounds (**2**), ligating on the tungsten(0) pentacarbonyl.

Taking into account the expected large protecting effect of the Mes* group, we first chose 1,3,5-tri-*t*-butyl-2 ethynylbenzene (**3a**) ²⁰ as the starting acetylene for ethynylphosphines **4a**–**6a**, and then ethynylbenzene (**3b**) for the series of **4b**–**6b**, as shown in Scheme 1.7 The acetylenes **3** were derived to acetylides, followed by treatment with chlorobis(dimethylamino)phosphine to give the corresponding diaminophosphines **4** almost quantitatively.21 Compounds **4** were treated with hydrogen chloride in ether to give dichlorophosphines **5**, and **5** was allowed to react with lithium aluminum hydride to afford primary phosphines **6** almost quantitatively.21 Although bulky phosphine **6a** was an airand moisture-sensitive colorless solid, its polymerization was avoided probably due to the bulky substituents. Phosphine **6b** was isolated without decomposition by extraction with ether.²²

$$
Ar-C=C-H \xrightarrow{a)} Ar-C=C-PX_2 \xrightarrow{\text{d}} Ar-C=C-PH_2
$$
\n
$$
3 \qquad b) \qquad 4: X = NMe_2 \qquad 6W \qquad [W]
$$
\n
$$
a: Ar = Mes^* \qquad b) \qquad 5: X = Cl \qquad [W] = W(CO)_5
$$
\n
$$
b: Ar = Ph \qquad c) \qquad 6: X = H
$$

Scheme 1. Preparations of ethtynylphosphines. *Reagents and conditions*: (a) (1) *n*-BuLi/THF/−78°C, (2) ClP(NMe₂)₂; (b) $HCl/Et_2O/-78$ to 15°C; (c) LiAlH₄/Et₂O/−78°C; (d) $W(CO)_{5}$ (THF)/THF.

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01008-0

^{*} Corresponding author. Fax: (+81) 22 217 6562; e-mail: yoshifj@ mail.cc.tohoku.ac.jp

Next, attempts were made to prepare diphosphene **2a** by a similar preparative method for unsymmetrical diphosphene **7**, ²³ but either from combination of **5a** and **8**–**10** or **6a** and **11** (Chart 2), the attempts failed to give **2a**, and the decomposition of **5a** and **6a** was observed. Accordingly, we tried to prepare **2a** in a complexed form. Thus, **6a** was allowed to react with an equivalent amount of $W(CO)_{5}(THF)$ to afford the corresponding complex $6aW^{21}$ in $35%$ isolated yield after SiO₂ column chromatography as an air-stable orange solid (Scheme 2). According to the method for complex $7W₁²⁴$ complex **6aW** was allowed to react with dichlorophosphine **11** in the presence of DBU (diazabicyclo[5.4.0]undec-7 ene) to give the corresponding carbonyltungsten complex **2aW**²⁵ as an air-stable orange solid. Complex **2aW** was isolated after SiO₂ column chromatography (hexane) followed by gel permeation chromatography (chloroform) in 20% yield from **3a** (Scheme 2). Moreover, complex **6bW**, prepared in a similar manner, afforded the corresponding diphosphene complex **2bW**²⁵ in 10% isolated yield from **3b** (Scheme 2). Complex **2bW** can be handled in air, although it decomposes on an $SiO₂$ column. It seems likely that the bulky Mes* group as a substituent on the acetylene is not essential for stabilization of either **2W** or **6W**. On the other hand, the reaction of **5** with phosphine complex **8W** did not give the diphosphene complex, probably due to the steric encumbrance.

31P NMR spectra of **2W** display a typical AB pattern, which is similar to diphosphene complex **7W**, ²⁴ indicating an *E*-configuration from its chemical shifts and an end-on coordination on $W(CO)$ ₅ from its J_{PW} values.²⁶ UV–vis spectra of 2W show longer λ_{max} values [457 nm ($2aW$), 462 nm ($2bW$)] than that for $7W$ (436 nm),²⁴ probably due to the effect of the acetylene unit on the extended conjugation.

The structures of **2aW** and **2bW** were confirmed by X-ray crystallographic analyses, as shown in Figs. 1 and $2.^{27}$ The C_{Mes} -P=P(W)-C=C-C_{Ar} systems are planar. The P-W distances of 2aW and 2bW are both 2.475 \dot{A} , which are comparable to those of 12 $[2.456(2)]$ $\rm \AA J^{28}$ and 13 (Chart 3) [2.484(3) and 2.491(3) $\rm \AA J^{29}$ The complex $2bW$ showed the longest $P = P$ bond length $[2.049(3)$ A ever reported for diphosphenes, i.e. 1

Scheme 2. Preparation of diphosphene complexes **2W**.

 $[2.034(2)$ Å],¹⁰ **12** [2.025(3) Å],²⁸ **13** [2.041(4) Å],²⁹ and the present $2aW$ (2.037(4) Å). The Mes^{*} ring on the phosphorus atom is almost perpendicular to the C_{Mes} ^{*}-P=P(W)-C=C-C_{Ar} plane (Ar = Mes^{*} or Ph) $[C_{\text{Mes}} - P1 - P2(W) - C1 - C2 - C_{\text{Ar}}$ versus Mes*(P): 85.4(3)° for **2aW** and 89.6(4)° for **2bW**], suggesting its sterically effective protection of the $P=P$ skeleton. On the contrary, the Ar ring on the acetylene unit is considerably planar to the C_{Mes} +P=P(W)-C=C-C_{Ar} plane $[{\rm C_{Mes}}^{\ast}$ -P=P(W)-C=C-C_{Ar} versus Ar(C): 19.7(3)^o for **2aW** and 12.2(2)° for **2bW**], in contrast to the average torsion angle of 64° observed for 1 in the solid state.^{10,11} Steric congestion around the P2 atom in **2aW** or **2bW** is released due to an acetylene spacer, and the aromatic ring on the acetylene side apparently tends to take co-planarity with the $P = P - C \equiv C$ group.

Figure 1. An ORTEP drawing of the molecular structure of **2aW**. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (°): P2–W 2.475(3), P1–P2 2.038(4), $P1-C(Mes*)$ 1.829(10), $P2-C1$ 1.745(10), $C1-C2$ 1.19(1), $C2-C(Mes*)$ 1.43(1), $C(Mes*)-P1-P2$ 97.3(3), $P1-P2-C1$ 101.3(4), P1–P2–W 142.5(1), C1–P2–W 116.0(4), P2–C1–C2 175.8(9), C1–C2–C(Mes*) 177.3(10).

Figure 2. An ORTEP drawing of the molecular structure of **2bW**. Hydrogen atoms are omitted for clarity. The *p*-*t*-butyl group in the Mes* group is disordered and the atoms with a predominant occupancy factor (0.57), which is refined isotropically, are shown. Selected bond lengths (A) and angles $(°)$: P2–W 2.475(2), P1–P2 2.049(3), P1–C(Mes^{*}) 1.855(7), $P2-C1$ 1.739(7), $C1-C2$ 1.21(1), $C2-C(Mes*)$ 1.448(10), $C(Mes^*)-P1-P2$ 102.9(2), P1-P2-C1 98.8(3), P1-P2-W 143.4(1), $C1-P2-W$ 116.8(3), P2-C1-C2 175.6(7), $C1-C2-C(Mes*)$ 175.5(8).

Chart 3.

Diphosphene complex **2aW** was isomerized by photoirradiation. Complex $2aW$ in benzene- d_6 was irradiated with a medium-pressure mercury lamp through a Pyrex filter to afford an E/Z mixture in a 4:1 ratio after 3 days, as shown in Scheme 2. The *Z*-isomer (**2aW**) displays an AB pattern with a higher ³¹P chemical shift and a larger ${}^{1}J_{\text{PP}}$ value than those for the *E*-isomer $[2aW'$: δ_P 268, 388 (¹J_{PW} 254 Hz), ¹J_{PP} 549 Hz].³⁰ Attempts to obtain free diphosphene **2a** by decomplexation of **2aW** are now in progress.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 1334049) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- 1. Cabelli, D. E.; Cowley, A. H.; Dewar, M. J. S. *J*. *Am*. *Chem*. *Soc*. **1981**, 103, 3290.
- 2. Scott, L. T.; Unno, M. *J*. *Am*. *Chem*. *Soc*. **1990**, 112, 7823.
- 3. Märkl, G.; Zollitsch, T.; Kreitmeier, P.; Prinzhorn, M.; Reitinger, S.; Eibler, E. *Chem*. *Eur*. *J*. **2000**, 6, 3806.
- 4. Ahmad, I. K.; Ozeki, H.; Sato, S. *J*. *Chem*. *Phys*. **1997**, 107, 1301.
- 5. Shao, G.-Q.; Fang, W.-H. *Chem*. *Phys*. *Lett*. **1998**, 290, 193.
- 6. Cotton, F. A.; Falvello, L. R.; Najjar, R. C. *Organometallics* **1982**, 1, 1640.
- 7. Galindo, A.; Mathieu, R.; Caminade, A.-M.; Majoral, J.-P. *Organometallics* **1988**, ⁷, 2198.
- 8. Davies, J. E.; Mays, M. J.; Raithby, P. R.; Sarveswaran, K.; Solan, G. A. *J*. *Chem*. *Soc*., *Dalton Trans*. **2001**, 1269.
- 9. Bennett, M. A.; Kwan, L.; Rae, A. D.; Wenger, E.; Willis, A. C. *J*. *Chem*. *Soc*., *Dalton Trans*. **2002**, 226.
- 10. Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. *J*. *Am*. *Chem*. *Soc*. **1981**, 103, 4587; **1982**, 104, 6167.
- 11. Regitz, M.; Scherer, O. J. *Multiple Bonds and Low Coordination in Phosphorus Chemistry*; Georg Thieme Verlag: Stuttgart, 1990.
- 12. Dillon, K. B.; Mathey, F.; Nixon, J. F. *Phosphorus*: *The Carbon Copy*; Wiley: Chichester, 1998.
- 13. Yoshifuji, M. *Main Group Chem*. *News* **1998**, 6, 20.
- 14. Yoshifuji, M. *J*. *Organomet*. *Chem*. **2000**, 611, 210.
- 15. Appel, R.; Niemann, B.; Schuhn, W.; Knoch, F. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1986**, 25, 932.
- 16. Appel, R.; Niemann, B.; Nieger, M. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1988**, 27, 957.
- 17. Niecke, E.; Altmeyer, O.; Nieger, M. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1988**, 945.
- 18. Saito, S.; Yamamoto, Y. *Chem*. *Rev*. **2000**, 100, 2901.
- 19. Maier, M. E. *Synlett* **1995**, 13.
- 20. Zimmermann, H. E.; Dodd, J. R. *J*. *Am*. *Chem*. *Soc*. **1970**, 92, 6507.
- 21. *NMR* data. **4a**: ³¹P{¹H} NMR (81 MHz, CD_2Cl_2) δ 76.2; ¹H NMR (200 MHz, CD₂Cl₂) δ 1.34 (9H, s, p-t-Bu), 1.58 (18H, s, *o-t-Bu*), 2.85 (12H, d, ⁴J_{HH} 12 Hz, NMe₂), 7.37 (2H, s, arom); ¹³C{¹H} NMR (50 MHz, CD_2Cl_2) δ 103.5 (d, ¹J_{PC} 16 Hz, PC=C), 107.6 (d, ²J_{PC} 7 Hz, PC=C). **5a**: ³¹P{¹H} NMR (81 MHz, CD₂Cl₂) δ 123.0; ¹H NMR (200 MHz, CD_2Cl_2) δ 1.35 (9H, s, *p*-*t*-Bu), 1.58 (18H, s, *o*-*t*-Bu), 7.24 (2H, s, arom); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂) δ 99.3 (d, ¹J_{PC} 75 Hz, PC=C), 118.1 (d, ²J_{PC} 5 Hz, PC=C). 6a: ³¹P NMR (81 MHz, CD_2Cl_2) δ -176.0 (t, ¹J_{PH} 214 Hz); ¹H NMR $(400 \text{ MHz}, \text{ CD}_2\text{Cl}_2) \delta 1.34 (9H, s, p-t-Bu), 1.55 (18H,$ s, *o-t-*Bu), 3.95 (2H, d, ¹J_{PH} 214 Hz, PH₂), 7.36 (2H, s, arom); ¹³C{¹H} NMR (50 MHz, CD₂Cl₂) δ 90.2 (d, $^{1}J_{\text{PC}}$ 9 Hz, PC=C), 106.1 (d, ² *J*_{PC} 9 Hz, PC≡C), 106.1 (d, ²J_{PC} 2 Hz, PC≡C). 6aW:
³¹P{¹H} NMR (81 MHz, CD₂Cl₂) δ –139.0 (t, ¹J_{PH} 373 Hz; $^{1}J_{\text{PW}}$ 228 Hz); ¹H NMR (200 MHz, CD₂Cl₂) δ 1.35 (9H, s, *p*-*t*-Bu), 1.57 (18H, s, *o*-*t*-Bu), 5.40 (2H, d, $^{1}J_{\text{PH}}$ 373 Hz, PH₂), 7.40 (2H, s, arom); $^{13}C(^{1}H)$ NMR $(50 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta 86.3 \text{ (d, }^1J_{\text{PC}} 86 \text{ Hz}, \text{PC}=\text{C}), 109.1$ $(d, {}^{2}J_{\text{PC}} 13 \text{ Hz}, \text{PC} \equiv C).$
- 22. Guillemin, J.-C.; Savignac, P.; Denis, J.-M. *Inorg*. *Chem*. **1991**, 30, 2170.
- 23. Yoshifuji, M.; Shibayama, K.; Inamoto, N.; Matsushita, T.; Nishimoto, K. *J*. *Am*. *Chem*. *Soc*. **1983**, 105, 2495.
- 24. Yoshifuji, M.; Hashida, T.; Shibayama, K.; Inamoto, N. *Chem*. *Lett*. **1985**, 287.
- 25. *Selected physical data*. **2aW**: Orange prisms (hexane), mp 164–166°C; ³¹P{¹H} NMR (81 MHz, CD₂Cl₂) δ 277.0, 470.0, $(^1J_{\text{PW}}$ 257 Hz), $^1J_{\text{PP}}=468$ Hz; ¹H NMR $(200 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta 1.38 (9H, s, p-t-Bu), 1.39 (9H, s,$ *p*-*t*-Bu), 1.57 (18H, s, *o*-*t*-Bu), 1.66 (18H, s, *o*-*t*-Bu), 7.45 (2H, brs, Mes*), 7.53 (2H, s, Mes*); $^{13}C_{1}^{1}H$ } NMR (50 MHz, CD_2Cl_2) δ 108.0 (dd, ¹J_{PC} 36 Hz, ²J_{PC} 29 Hz, P-C=C), 115.8 (m, P-C=C); UV-vis (CH₂Cl₂) λ_{max} (log ε) 457 nm (3.98). Anal. calcd for $C_{43}H_{58}O_5P_2W$: C, 56.91; H, 6.94. Found: C, 57.34; H, 6.49%. **2bW**: Orange prisms (toluene), mp 165–169°C; ${}^{31}P{^1H}$ NMR (162 MHz, CDCl₃) $\delta = 273.1, 465.9$ $(^1J_{\rm PW}$ 252 Hz), $^1J_{\rm PP}$ 467 Hz; ¹H NMR (400 MHz, CDCl₃) δ 1.34 (9H, s, *p*-*t*-Bu), 1.54 (18H, s, *o*-*t*-Bu), 7.53 (2H, s, Mes*), 7.2–7.7 (5H, m, Ph); UV–vis (CH₂Cl₂) λ_{max} (log ε) 462 nm (3.89). HRMS (EI) calcd for C31H34O5P2W: *m*/*z* 732.1391. Found: *m*/*z* 732.1393.
- 26. Yoshifuji, M. *Bull*. *Chem*. *Soc*. *Jpn*. **1997**, 70, 2881.
- 27. *Crystal data*. **2aW**: $C_{43}H_{58}O_5P_2W$, $M=900.73$, triclinic, $P\overline{1}$ (#2), $a=14.530(4)$, $b=15.24(1)$, $c=11.712(4)$ Å, $\alpha = 106.26(5)$, $\beta = 111.15(2)$, $\gamma = 100.64(4)$ °, $V = 2200(2)$ \AA^3 , *Z*=2, $\rho_{\text{calcd}} = 1.36$ g cm⁻¹, $\mu(\text{MoK}_{\alpha}) = 2.74$ mm⁻¹, *T*=140 K, 6780 total reflections, 6490 unique reflec-

tions [$I > 2.0\sigma(I)$], 2θ max = 50.1°, $R1 = 0.072$, $R_W = 0.115$ (all data), $S=1.58$ for 464 parameters (CCDC 176662). **2bW**: $C_{31}H_{34}O_5P_2W$, $M=732.40$, triclinic, $P\overline{1}$ (#2), $a=$ 11.750(2), $b = 15.57(1)$, $c = 9.672(3)$ Å, $\alpha = 98.52(3)$, $\beta =$ 113.04(2), $\gamma = 76.33(3)^\circ$, $V = 1578(1)$ \mathring{A}^3 , $Z = 2$, $\rho_{\text{calcd}} = 1.54 \text{ g cm}^{-1}, \mu(\text{MoK}_{\alpha}) = 3.80 \text{ mm}^{-1}, T = 140 \text{ K},$ 4880 total reflections, 4642 unique reflections $[I>2.0\sigma(I)],$ 2θ max = 50.1°, R 1 = 0.050, $R_{\rm W}$ = 0.129 (all data), S = 1.27

for 350 parameters (CCDC 178461).

- 28. An, D.-L.; Toyota, K.; Yasunami, M.; Yoshifuji, M. *J*. *Organomet*. *Chem*. **1996**, 508, 7.
- 29. Yoshifuji, M.; Shinohara, N.; Toyota, K. *Tetrahedron Lett*. **1996**, 37, 7815.
- 30. Yoshifuji, M.; Hashida, T.; Inamoto, N.; Hirotsu, K.; Horiuchi, T.; Higuchi, T.; Ito, K.; Nagase, S. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1985**, ²⁴, 211.